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A detailed numerical study of two-dimensional flow past a circular cylinder a t  
moderately low Reynolds numbers has been conducted using three different 
numerical algorithms for solving the time-dependent compressible Navier-Stokes 
equations. It was found that if the algorithm and associated boundary conditions 
were consistent and stable, then the major features of the unsteady wake were well 
predicted. However, it was also found that even stable and consistent boundary 
conditions could introduce additional periodic phenomena reminiscent of the type 
seen in previous wind-tunnel experiments. However, these additional frequencies 
were eliminated by formulating the boundary conditions in terms of the 
characteristic variables. An analysis based on a simplified model provides an 
explanation for this behaviour. 

1. Introduction 
Historically, the unsteady wake generated by a circular cylinder in low-speed flow 

has bccn of great interest to computational fluid dynamicists as well as to theoretical 
and experimental aerodynamicists. The Reynolds-number range between 40 and 
1000 has been of particular interest because it spans the transition from steady flow 
to unsteady wake flow dominated by the periodic shedding of vortices from the 
cylinder. The shedding frequency of these vortices increases with Reynolds number 
over this range, asymptotically approaching a constant value. However, Sreenivasan 
(1985) measured more than one distinct frequency in the shedding regime at low 
Reynolds numbers. In  addition to the vortex-shedding frequency, he found clearly 
discernible, lower frequencies in the frequency spectrum for the streamwise velocity 
measured in the wake. These additional frequencies were not subharmonics of the 
primary shedding frequency. He concluded that this was a feature of the initial 
stages of transition to turbulence in agreement with the route to chaos described by 
Ruelle & Takens (1971). Sirovich (1985) suggested that these additional modes of 
oscillation could be described theoretically in terms of the classical von Karman 
vortex street. On the other hand, based on measurements of vibrating and non- 
vibrating cylinders, Van Atta & Gharib (1987) concluded that the additional 
frequencies found by Sreenivasan were due to the aeroelastic coupling of the vortex 
wake with cylinder vibration modes. For a non-vibrating cylinder, they found no 
spectral peaks other than the primary Strouhal shedding frequency. Recently, 
however, Sreenivasan (1990) determined that the cylinders in his previous 
experiments, in which secondary frequencies were found, did not vibrate. 
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Conflicting results have also come from numerical studies of this flow. Karniadakis 
& Triantafyllou (1989) found no secondary frequency in their computation of an 
incompressible flow past a circular cylinder using the spectral-element method, 
Moreover, they were able to excite a secondary mode by introducing an external 
forcing function into the momentum equations. Townsend, Rudy & Sirovich (1987) 
did find a secondary frequency in their finite-difference computation of low-speed 
compressible flow past a circular cylinder. This low frequency, which was found in 
the frequency spectrum of the pressure a t  various points in the wake, was very nearly 
the same as the one found experimentally by Sreenivasan (1985). This low frequency, 
unlike the shedding frequency, was dependent upon the size of the solution domain, 
suggesting that i t  might have been due to  a numerical effect. 

The present paper describes the results of further numerical studies which 
demonstrate that  the secondary frequency found in the compressible-flow cal- 
culations was produced by the far-field boundary conditions. Three different 
numerical methods were used to solve the time-dependent compressible Navier- 
Stokes equations. The first of these was the finite-difference technique used by 
Townsend et al. (1987), the second method was a fully spectral method (Don & 
Gottlieb 1990), while the third was a mixed spectral-finite-difference method (Don 
1989) which was a combination of the other two methods. Computations were made 
with the finite-difference code using two sets of far-field boundary conditions. These 
calculations, which were made for flow conditions in both the vortex-shedding regime 
and the steady-wake regime, demonstrate the effect of the boundary conditions on 
the frequency spectrum of the pressure in the wake. With the proper choice of far- 
field boundary conditions, no frequencies other than the primary shedding frequency 
and multiples of the primary frequency were found a t  a Reynolds number of 80. In 
addition, when the ‘improper’ boundary conditions were used to compute the flow 
at a Reynolds number of 20, where the flow is known to be steady, then indeed no 
shedding was predicted although the secondary frequency did appear in the solution. 
These findings were further substantiated by calculations with the highly accurate 
spectral method. 

The details of the solution procedures, including boundary conditions, are 
described in $2 of the paper. All of the computed results are presented in $3. In  $4, 
a mathematical a,nalysis of boundary conditions for a model system is presented 
which shows how additional frequencies can be produced by the boundary conditions. 
Finally, a summary of the study and some concluding remarks are given in $5 .  

2. Problenl formulation and numerical methods 
2.1. Governing equations 

For the present compressible-flow calculations, the governing equations are those 
which describe the conservation of mass, momentum, and energy of an ideal fluid in 
the absence of external forces. The non-dimensional form of these equations in a 
general curvilinear coordinate system is 
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where 

where u and v are the streamwise and normal velocity components, respectively, p 
is the density, p is the static pressure, T is the temperature, y is the ratio of specific 
heats, Pr is the Prandtl number, K is the thermal conductivity, J is the Jacobian of 
the transformation from Cartesian coordinates (x ,  y )  to the general curvilinear 
coordinates (t, q ) ,  i.e. 

E is the specific internal energy defined by 

E = p[T+!j(u2+v2)], 

and the elements of the stress tensor are 

and 

The non-dimensional equation of state is 

P = (7- 1) PT, 

and the dimensionless viscosity is given by the Sutherland law 

C ,  Tt 
.=C,+T' 

where C, and C, are constants. The ratio of specific heats y was 1.4, and the Prandtl 
number Pr was 0.72. These equations were non-dimensionalized using the following 
reference quantities: Uref = Urn, pref = pa, pref = prn V,, and qef = V, /cv ,  where U ,  
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and pm are the free-stream velocity and density, respectively, and c,  is the specific 
heat a t  constant volume. Therefore, the reference Reynolds number is defined as 
Reref = UrefD/vref ,  where D is the diameter of the cylinder and vref is the kinematic 
viscosity based on the reference temperature. However, it should be noted that the 
Reynolds number used in subsequent sections of the paper to characterize the flow 
conditions for which calculations were made is bascd upon free-stream quantities, i.e. 
RezvD = U,D/v , .  

2.2. Grid 
A polar grid was used in the calculations. The grid was generated in the physical (x, 
y)-plane and mapped numerically onto the computational (t, q)-planc. The 6- 
coordinate corresponded to the circumferential direction and the q-coordinate to the 
radial direction. The grid was stretched in both directions so that grid points were 
clustered towards the cylinder in the radial direction and towards the wake region in 
the circumferential direction. For the finite-difference calculations, the basic grid had 
122 points in the circumferential direction and 151 points normal to the body. The 
outer boundary of the grid was located 25 diameters from the cylinder surface. For 
the computations with the spectral method, the grid had 64 and 48 points in the 
angular and radial directions, respectively. Calculations were made with the outer 
boundary a t  both 20 and 22.5 diameters away from the cylinder. For computations 
with the mixed spectral-finite-differcnce method, the grid had 70 and 100 points in 
the circumferential and radial directions, respectively. For this case, the far-field 
boundary was located 22.5 diameters from the cylinder surface. In  the experiments 
of Sreenivasan (1985), the wind-tunnel walls were located 30 diameters above and 
below the cylinder (K. R.  Sreenivasan, private communication). 

2.3. Numerical methods 
The finite-difference method used in the present study was the original unsplit 
technique of MacCormack (1969), which has second-order accuracy in both space and 
time. The method is an explicit, conditionally stable, predictor-corrector scheme. 
Forward differences were used to approximate the derivatives of the fluxes in (2.1) 
in the predictor step, and backward differences were used in the corrector step. The 
first derivatives appearing in the viscous flux terms, F, and G,, were approximated 
with backward differences if the flux derivative was being approximated with a 
forward difference, and vice versa. 

The spectral algorithm used both the Fourier and Chebyshev collocation methods. 
Because of the polar grid, the flow could be treated as being periodic a t  the 
boundaries of the solution domain in the circumferential direction. Thus, the Fourier 
collocation (pseudospectral) method was the natural choice for the circumferential 
direction. Since the flow in the radial direction was not periodic, the Chebyshev 
collocation method was used in that direction. Both of these methods were employed 
in the form of the matrix vector multiplication method instead of the more 
commonly used fast Fourier transform (FFT) method. To improve the stability of 
the algorithm, a fourth-order exponential filter (Don 1989) was applied to  the 
differentiation and solution matrices. The solution was advanced in time using a 
second-order Runge-Kutta method. 

A third approach which combined these two methods was also used. In this case, 
the Fourier method was used in the circumferential direction and the finite-difference 
method in the radial direction. 
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FIGURE 1.  Solution domain in the physical plane. 

2.4. Boundary conditions 
A sketch of the solution domain in the physical plane is shown in figure 1. Periodic 
boundary conditions for the dependent variables were applied along the cut line in 
the wake for both the finite-difference and spectral methods. Standard solid-wall 
boundary conditions for viscous flow were applied at the cylinder surface. A no-slip 
condition was applied so that the velocity components, u and v, were specified to be 
zero at  the surface. The wall temperature was held fixed at  the value of the free- 
stream temperature. In the finite-difference code, the density at the wall was 
obtained from an extrapolation of interior-point values of pressure in the direction 
normal to the wall. In the spectral code, the density at the wall was computed as a 
part of the solution. 

The outer boundary is arbitrarily chosen, introduced only to restrict the 
computational domain to a finite size. Since this is a boundary across which fluid 
passes either into or out of the computational region and since disturbances can 
propagate upstream as well as downstream in a subsonic flow, careful consideration 
must be given to the specification of boundary conditions on this outer boundary. If 
this outer boundary is located sufficiently far from the cylinder surface, viscous 
effects are negligible in the flow crossing the boundaries except in the narrow region 
where the cylinder wake is located. As a result, the proper choice of boundary 
conditions can be found from an analysis of the inviscid form of the governing 
equations. 

For a subsonic inflow boundary, this analysis shows that there are three 
characteristics coming into the solution domain and one outgoing characteristic. 
Thus, there must be three quantities specified at an inflow boundary. Since there are 
four governing equations, the numerical method requires a fourth boundary 
condition in addition to the three required for proper specification of the boundary 
conditions in a mathematical sense. In the finite-difference code, calculations were 
made with two different sets of inflow boundary conditions. The fist set, which was 
used in the previous solutions reported by Townsend et al. (1987), was formulated in 
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terms o f  the primitive variables u, v, p,  and T. At the inflow boundary, free-stream 
values of the two velocity components and the temperature were specified, i.e. 

(2.9) - 
'%flow - Uw 7 

(2.10) 

(2.11) 

The density was obtained from a zeroth-order extrapolation of pressure from the 
interior of the solution domain and the use of (2.7). In  preliminary calculations in 
which only the primary shedding frequency was of interest, this boundary condition 
gave results which were not significantly different from those obtained using an 
extrapolation of the outgoing characteristic to  obtain the pressure. 

A t  the outflow boundary, only one analytic boundary condition is needed since 
there is only one incoming characteristic. A typical choice is the specification of the 
static pressure. However, as demonstrated numerically by Rudy & Strikwerda 
(1980), this can cause waves to be reflected from the outflow boundary back into the 
solution domain, adversely affecting the solution in the interior of the domain. A 
non-reflecting boundary condition based on the work of Engquist & Majda (1977) 
was used in the present study. Thus, the pressure at the outflow boundary was found 
from a finite-difference approximation to the equation 

(2.12) 

where c is the non-dimensional speed of sound given by 

c = [y (y-  1 )  TI;. (2.13) 

This boundary condition was applied along the outflow boundary where the viscous 
wake crossed the boundary as well as the region immediately above and below the 
wake. Along the remainder of the outflow boundary, where the flow was essentially 
inviscid, the pressure was specified to be the free-stream pressure. The variables u, 
v, and T along the entire outflow boundary were obtained from zeroth-order 
extrapolation, and the density was then obtained from (2.7) using the boundary 
value of p and the extrapolated value of T. 

The second set of boundary conditions, which was also used in the spectral 
calculations, was based entirely on the characteristic variables. An analysis of the 
inviscid form of (2.1), linearized around the free-stream conditions, shows (Gottlieb, 
Lustman & Streett 1984) that  the characteristic variables, with corresponding 
eigenvalues a, = a2 = U .  N ,  a3 = U .  N-c,  and a4 = U - N + c ,  are 

tim R, =p--  (&Uw. U w - M .  U W + E ) ,  
Y - 1  

(2.14) 

R, = ( M - p U w ) . N + ( ~ ) ( ~ U w . U w - M . U w + E ) ,  

(2.16) 

(2.17) 
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where Urn = (urn, w m )  is the free-stream velocity, M = (m,,m,) = (pu,pv)  is the local 
momentum, c, is the free-stream speed of sound, and 

is the unit outward normal vector. At  the subsonic inflow boundary, the 
characteristic variables corresponding to the three incoming characteristics were 
specified using free-stream values. These boundary values then became 

E; = R,(p,, M,, Em), i = 1,2,3.  (2.18) 

Furthermore, the required numerical boundary condition is 

F4 = R a ( ~ n u r n >  M n u m 9 E n u r n ) j  (2.19) 

where values in F4 are obtained by extrapolation from the interior of the domain in 
the finite-difference code and are obtained as a part of the solution in the spectral 
method. Similarly, at the outflow boundary, the characteristic variable corres- 
ponding to the incoming characteristic was specified, i.e. 

F3 = R,(P,,M,,E,) (2.20) 

and the values for the other three characteristic variables were found numerically as 
at  the inflow boundary, so that 

E; = R t ( P n u m ,  M n u r n , E n u m ) ,  i = 1,294. (2.21) 

At each boundary, the conserved variables were then computed from the appropriate 
system of equations, giving 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

on the outer boundary, where 

$ 1 = y - l 2  (F3+F4),  $2 = i(F4-F3), $, = F2. 

3. Results and discussion 
Computations were made with all three methods for Mach 0.4 flow at a Reynolds 

number of 80. The initial flow field was specified to be free-stream flow everywhere 
except at  the cylinder surface. Figure 2 ( a )  shows pressure contours (isobars) from the 
finite-difference solution using the primitive-variable far-field boundary conditions 
at a time after the periodic vortex shedding had been fully established. The pressure 
field for the finite-difference solution using the characteristic far-field boundary 
conditions is shown in figure 2(b). The corresponding solution for the fully spectral 
code is given in figure 3. 
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FIGURE 2. Lines of constant pressure (pip,). Finite-difference code. Contour increment = 0.01. 
M ,  = 0.4, Re,,D = 80. (a) Primitive-variable boundary conditions. ( b )  Characteristic-variable 
boundary conditions. 

As the computations were made, the values of the pressure were saved at ten 
selected grid points in the flow field. At least four of these grid points were located 
in the wake region and the others were upstream of the cylinder. For the finite- 
difference code, the computed pressure data were saved every twenty time steps, and 
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FIGURE 3. Lines of constant pressure (pip,). Fully spectral code. Contour increment = 0.01. 
M, = 0.4, Re,,D = 80. 

for the fully spectral and mixed spectral-finite-difference codes, because of the larger 
time step used in these methods, the data were saved after every time step. 

The set of pressure data at  each point was analysed for its frequency spectrum 
using a discrete fast Fourier transform (FFT) technique. First, the time-averaged 
pressure was subtracted from the pressure data to form a time sequence pj of N 
points, where N = 2m for some positive integer m. Second, the Fourier coefficients 
of the transformation 

N-1 

f k -  - A pje-i(2Rjk/N) for k = 0,1, .  . . , N -  1 (3.1) 
3-0 

were obtained using a pre-coded FFT subroutine. A = 1 in the subroutine used to 
analyse the finite-difference results and A = 1 / N  in the subroutine used to analyse 
the results from the fully spectral and mixed-method codes. The power spectral 
density dk  for wavenumber k was then found simply as 

d ,  = BI&12 where k = 0,1 , .  . . , N -  1. (3.2) 

B = 2 / N  for the finite-difference results and B = 1 for the others. The Strouhal 
number (non-dimensional frequency) corresponding to the vortex-shedding fre- 
quency was 

where At was the time step and k, was the value of k such that 

S t ,  = k , / (NAt ) ,  (3.3) 

d,, = max d,. 
k 

Similarly, St, is the Strouhal number corresponding to the secondary frequency. 
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Method Re,,, M ,  Domain 

FD 80 0.4 51D 
FD 80 0.2 51D 
FD 80 0.1 51D 
FD 80 0.4 51D 
S 80 0.4 46D 
S 80 0.4 41D 
M 80 0.4 46D 
M 80 0.4 46D 

Inflow BC 

Primitive 
Primitive 
Primitive 

Characteristic 
Characteristic 
Characteristic 

Primitive 
Characteristic 

Outflow BC 

Primitive 
Primitive 
Primitive 

Characteristic 
Characteristic 
Characteristic 

Primitive 
Characteristic 

St, St, 
0.1515 0.0165 
0.1504 0.0347 
0.1564 0.0721 
0.1518 - 

0.1574 - 
0.1565 - 
0.1589 0.0225 
0.1558 - 

TABLE 1. Shedding frequencies computed with finite-difference code (FD), mixed finite- 
difference-spectral code (M), and fully spectral code (S) 

Note that, because the power density was found only for discrete frequencies, there 
was an inherent discretization error in determining the dominant frequencies in the 
flow. The actual peak frequency would be within half of the discretization, or 
fl/(WAt), of that given by the FFT. In  some of the present cases, the resulting 
error in the Strouhal number could be as large as 0.003. In  an effort to get a 
somewhat better estimate, for each dominant wavenumber a peak in the frequency 
spectrum was estimated using a three-point parabolic interpolation. These values 
were used in table 1, which summarizes the results found in the present study. 

These frequencies were based on the computed pressure a t  a point in the wake 10 
diameters downstream of the cylinder and one diameter above the wake centreline. 
This location corresponds to the principal one used in the experiments of Sreenivasan 
(1985). It should be noted that the frequencies for the finite-difference solution with 
primitive variables a t  Mach 0.4 differ slightly from those given by Townsend et al. 
(1987), in which there was a systematic error due to  a misinterpretation of the output 
from the FFT subroutine. 

Low-speed experimental measurements of the primary shedding frequency in the 
wake of a circular cylinder at low Reynolds numbers were reported by Roshko 
(1953). An approximation to the data was given by the equation 

st, = 0.212 1 -- ( i e L 2 , ) .  (3.4) 

For a Reynolds number of 80, this equation yields St, = 0.1658. As shown in table 
1, the computed values of St, are very close to  the experimental value in all cases. 
The largest deviation is 3.47% and most of the values are within 2 %  of the 
experimental frequency. Therefore, the primary vortex-shedding frequency in the 
wake is well predicted with either set of boundary conditions. 

Plots of the time history of the pressure and the resulting frequency spectrum at 
the selected point in the wake flow given by the finite-difference calculations are 
shown in figure 4 for both sets of boundary conditions. The corresponding plots for 
the fully spectral calculations with characterisic boundary conditions are shown in 
figure 5.  As shown in figure 4, the solution with primitive-variable boundary 
conditions produces a low frequency which is not seen in the spectrum from the 
calculations with the characteristic boundary conditions. This frequency is not a 
subharmonic of the primary shedding frequency and was not found in any of the 
solutions using any of the three codes when characteristic boundary conditions were 
employed. Furthermore, the amplitude of the secondary frequency remained 
relatively constant a t  all locations for which the spectrum was computed, including 
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FIGURE 4. Effect of boundary conditions on the pressure in the wake region at a location 10 cylinder 
diameters downstream of the cylinder and one diameter above the wake centreline. Finite- 
difference code. (a) Time history of pressure. (6) Frequency spectrum of pressure. 

a location 10 diameters upstream of the cylinder. At this point, the amplitude of the 
primary shedding frequency was significantly lower than in the wake so that the 
secondary frequency was the dominant frequency in the signal. These factors suggest 
that  the secondary frequency is a spurious numerical artifact. 

Calculations were also made with the finite-difference code using the primitive- 
variable boundary conditions to determine the effect of Mach number on the 
computed frequencies. Computations were made a t  Mach numbers of 0.2 and 0.1 for 
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Strouhal number 
FIQURE 5. Computed pressure in the wake region at a location 10 cylinder diameters downstream 
of the cylinder and one diameter above the wake centreline. Fully spectral code. (a )  Time history 
of pressure. (6) Frequency spectrum of pressure. 

a Reynolds number of 80. As shown in table 1,  there was only a small effect on St,  
as Mach number was lowered. However, as Mach number was decreased by a factor 
of 2, St, increased by a factor of approximately 2. 

To further establish that the secondary frequency is a numerical artifact, 
calculations were made for Mach 0.4 flow a t  a Reynolds number of 20. Under these 
conditions, the flow in the wake should be steady, consisting of two symmetric 
counter-rotating vortices just behind the cylinder. Calculations with the finite- 
difference code produced the expected steady wake with both sets of boundary 
conditions. However, when the primitive-variable boundary conditions were used, a 
secondary frequency appeared in the frequency spectrum of the pressure in the wake 
with a value of St, = 0.0158. This spurious secondary frequency did not appear when 
characteristic boundary conditions were used. 

In summary, the calculations presented in this section demonstrate that a 
secondary frequency can be introduced into the solution by the far-field boundary 
conditions. By coincidence, the value of this frequency was very close to  that found 
experimentally by Sreenivasan (1985). This frequency was not found when the 
boundary conditions were properly formulated in terms of characteristic variables. 

4. Analysis 
As shown in 3, the secondary frequency disappeared when boundary conditions 

based on the characteristic variables were used at the outer boundary, demonstrating 
that the secondary frequency computed with the primitive-variable boundary 
conditions was, in fact, of numerical origin. In  this section, a theoretical explanation 
is given for these results using a modal analysis of the effect of inflow boundary 
conditions on the stability of small perturbations to the flow. It is shown that the use 
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a Reynolds number of 80. As shown in table 1,  there was only a small effect on St,  
as Mach number was lowered. However, as Mach number was decreased by a factor 
of 2, St, increased by a factor of approximately 2. 

To further establish that the secondary frequency is a numerical artifact, 
calculations were made for Mach 0.4 flow a t  a Reynolds number of 20. Under these 
conditions, the flow in the wake should be steady, consisting of two symmetric 
counter-rotating vortices just behind the cylinder. Calculations with the finite- 
difference code produced the expected steady wake with both sets of boundary 
conditions. However, when the primitive-variable boundary conditions were used, a 
secondary frequency appeared in the frequency spectrum of the pressure in the wake 
with a value of St, = 0.0158. This spurious secondary frequency did not appear when 
characteristic boundary conditions were used. 

In summary, the calculations presented in this section demonstrate that a 
secondary frequency can be introduced into the solution by the far-field boundary 
conditions. By coincidence, the value of this frequency was very close to  that found 
experimentally by Sreenivasan (1985). This frequency was not found when the 
boundary conditions were properly formulated in terms of characteristic variables. 

4. Analysis 
As shown in 3, the secondary frequency disappeared when boundary conditions 

based on the characteristic variables were used at the outer boundary, demonstrating 
that the secondary frequency computed with the primitive-variable boundary 
conditions was, in fact, of numerical origin. In  this section, a theoretical explanation 
is given for these results using a modal analysis of the effect of inflow boundary 
conditions on the stability of small perturbations to the flow. It is shown that the use 
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of boundary conditions based on non-characteristic variables causes a temporally 
periodic perturbation. Furthermore, it is demonstrated that the use of characteristic 
variables eliminates this periodic disturbance. 

The theoretical study is based upon a one-dimensional treatment of the Euler 
equations. The use of the inviscid form of the governing equations is justified a t  
distances far from the cylinder since the Reynolds numbers under consideration 
place the flow well outside the limits of the Stokes and Oseen regions. The 
assumption of one-dimensionality is more problematical. However, i t  is a reasonably 
good representation for the calculations in which a finite-difference method was used 
in the radial direction and the Fourier collocation method was used in the 
circumferential direction. In fact, it will be shown that the theoretical predictions of 
the secondary frequency are in good agreement (within 15%) with the computed 
values for this case. The agreement with the computed results from the fully finite- 
difference code is not quite as good, although the trend with Mach number is well- 
predicted. 

The analysis considers a region of flow along the x-axis sufficiently far upstream 
from the cylinder. The one-dimensional form of (2.1) under the assumption of 
inviscid flow then becomes 

where 

aU aF -+- = 0, 
at ax 

and m = pu.  In terms of the dependent variables in U, the equation of state, (2.7), 
is 

Equation (4.1) can be rewritten in non-conservation form as 

au au 
-+A(U)--  = 0, 
at ax (4.3) 

where A( U) = aF/aU is the Jacobian of the flux with respect to the solution vector 
U. Linearizing about the steady free-stream conditions, this equation becomes 

where SU = U -  Urn is the perturbation vector. The matrix A (  Urn) = [aF( U)/av],, 
has three eigenvalues, a, = urn-crn, a, = u m + c m ,  and a3 = urn. The corresponding 
eigenvectors in terms of the conserved-variable perturbations are 

Y--l R, = - (Sm- urn Sp) + - [#uL Sp - urn Sm + SE], 
Cm 

(4.5) 
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and R,  = c , S p - ~ [ ~ u 2 , S p - u W S m + S E ] .  Y--l 
(4.7) 

G W  

Furthermore, using a linearized version of the equation of state, i.e. 

Sp = (y  - 1) [+A: Sp-u, Sm+ SE], (4.8) 

(4.5)-(4.7) may also be written in terms of the primitive-variable perturbations (Sp, 
Su, Sp), giving 

and 

1 

C W  

Rl = -pw S ~ f - d p ,  (4.9) 

(4.10) 

(4.11) 

Any perturbation imposed on the free-stream solution will evolve as a combination 
of these eigenvectors. This evolution can be studied locally near the outer 
computational boundary by employing the modal analysis developed by Gustafsson, 
Kreiss & Sundstrom (1972) and Osher (1969) to  study the stability of numerical 
approximations to initial-boundary-value problems. 

Consider an inflow boundary point with subsonic flow crossing the boundary into 
the solution domain. At this point, a2 = u, + c ,  > 0 and a3 = u, > 0. Therefore, the 
characteristic variables, R, and R3, corresponding to  these two incoming charac- 
teristics must be specified. The third one, R,, corresponds to a, = u, - c ,  < 0 and 
thus exits the domain. To model the situation near the inflow boundary, consider the 
governing equations in terms of the characteristic variables, namely 

or 

aR 
- + ( u w - c w ) d  at ax = 0, 

-+(u,+c,)L at ax = 0 ,  

-+u,- aR3- - 0 

aR aR2 

at ax 

aR8 i3R 
- + a 8 L  at ax = 0 , s = 1,2,3.  

(4.12) 

(4.13) 

(4.14) 

(4.15) 

In  the one-dimensional case, the finite-difference algorithm described in $3 is 
equivalent to  a Lax-Wendroff scheme and can be written as 

where w ; ~  = w8(j  Ax,  n At) is the finite-difference approximation to  Rs(x, t ) .  Equation 
(4.16) is solved with inflow-type boundary conditions imposed a t  xboundary =  AX),-^ 
which are of the form 

( R 2 - 4 ) , - 0  = 0, (4.17) 

( R 3 - P R 1 ) j - 0  = O, (4.18) 
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and (R,+ + d 3 ) j - o  = (R1 + a 3 ) j - l .  (4.19) 

Thus, (4.19) is a zeroth-order extrapolation on R,. 
The modal solution ansatz for this case is 

R, = A,K{z~ ,  s = 1,2,3.  (4.20) 

Substituting this solution into (4.16) yields the three modal characteristic equations 
given by 

(4.21) 

where A, = (a ,  A t ) / A x .  Substituting (4.20) into (4.17)-(4.19) gives the modal 
representation of the boundary conditions, 

(h: - A 8 )  K," + 2( 1 - Z -  h:) K, + (A," + h,) = 0, S = 1,2 ,3  

(4.22) 

(4.23) 

and 

Since A, =!= 0, (4.24) may be rewritten as 

A,(l - K , )  +aA,(l - K ~ )  +€A3( 1 - K ~ )  = 0. (4.24) 

(1  - K 1 )  +aV( 1 - K 2 )  +P€( 1 - K 3 )  = 0. (4.25) 

It is necessary to find z such that IzI = 1 and K, (s = 1,2,3)  such that ~ K J  < 1 which 
solve (4.21) and (4.25) simultaneously. It should be noted that IzI = 1, z =t= 1, 
corresponds to a solution that is purely periodic in time. If the search for such 
solutions fails (which it does, as it will be shown, when a = P =  0, i.e. for 
characteristic specification), then the boundary treatment does not introduce any 
spurious frequency. If, under a given set of boundary conditions, there is a solution 
to (4.21)-(4.25), then the phase of z gives the temporal frequency of the numerically 
introduced perturbation. Of course, for this frequency to be discerned, at least one 
of the K will be nearly 1 in magnitude. Otherwise, the temporally periodic 
perturbation will decay spatially as 1 ~ 1 ' .  However, it turned out that in all of the 
calculations with the model, it is always the case that 0.995 < J K , ~  < 1. 

In the actual numerical computations presented in 9 3, the non-characteristic 
boundary conditions (translated to the present one-dimensional model) consisted of 
specifying the velocity and temperature ((Su),+ = 0, (ST),,, = 0) and performing the 
extrapolation 

( d , - O  = (P),-,%. (4.26) 
Ta2 

This is equivalent to 

(4.27) 

This is not a 'pure' extrapolation on the density. Using (Su),,, = (ST),,, = 0 in (4.17) 
and (4.18) leads directly to a = 1 and /3 = y- 1. If (4.27) were a pure extrapolation 
on p, then from the relation 

2cmSp = R,+R,+2R3 (4.28) 

(see (4.9)-(4.11)) it would follow that u = 1 and E = 2. However, it should be noted 
that while Su does not appear in (4.27), and hence u = 1 in (4.19), E must have a value 
which depends on the solution inside the domain. Therefore, it  is necessary to seek 

19 FLW 225 
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N Armax Atcode Amode, ( 8 t Z ) e o d e  (8tz)rnodel 

100 0.41 0.0053 0.0452 0.0244 0.0296 
100 0.46 0.0053 0.0403 0.0225 0.0264 

TABLE 2. Comparison of the secondary frequencies computed using the mixed spectral-finite- 
difference code and predicted by the analysis. M ,  = 0.4. 

solutions to  the nonlinear system (4.21) and (4.25) for a given A, such that (21 = I ,  
z =i= 1 , l ~ ~ l  < 1,  and acr = 1 .  The solution that satisfies z = eie (0 f 0 ) ,  1 ~ ~ 1  < 1 (s = 1,2,  
3) with acr = 1 then yields the value of e/3 = (y-  1) E .  The numerical solution of (4.21) 
and (4.25) can be sensitive near ~ K J  = 1 so double precision was used in the numerical 
solutions of these equations. For a wide range ofM, (and hence A ) ,  it  was found that 
e/3 = - 1.24kO.2, giving confidence in the mode1.t The A used in the theoretical 
prediction, A = ( u + c ) ( A t / A x ) ,  was based on the actual time step used in the 
Navier-Stokes codes and Ax was taken as the radial cell size (Arm,,) nearest to the 
inflow boundary. 

The present theoretical model most closely corresponds to the Navier-Stokes code 
with the finite-difference method in the radial direction and the Fourier collocat,ion 
method in the circumferential direction. A comparison of the theoretical secondary 
Strouhal number from the one-dimensional model with the one obtained from this 
Navier-Stokcs code is given in table 2. In  view of the fact that the analysis is based 
on a one-dimensional model, the agreement between the values of St, predicted by 
the model and the computed values is reasonably good. Furthermore, the model 
predicts the trend of decreasing St ,  with increasing domain size. 

Finally, note that if the characteristic boundary conditions (i.e. a = ,I3 = 0 in 
(4.17)-(4.19)) are used, then the only solution to (4.21)-(4.25) is A ,  = A ,  = 0, K~ = 
1, and z = 1 .  It can be shown by perturbation analysis that  this is not a generalized 
eigenvalue. Thus, any perturbation from the boundary, R, = A , K ; Z ~  = A ,  will 
remain constant and small. 

5. Concluding remarks 
A numerical study has been conducted using three different codes to compute the 

unsteady flow about a circular cylinder in low-speed flow at  low Reynolds numbers. 
One of these codes used a finite-difference method to solve the two-dimensional time- 
dependent compressible Navier-Stokes equations, the second used spectral tech- 
niques, and the third used a combination of these two methods. With stable and 
consistent boundary conditions, all of these methods were able to predict accurately 
the major features of the flow such as the vortex-shedding frequency. However, i t  
was found that certain far-field boundary conditions which used extrapolation of the 
primitive variables introduced an additional temporal frequency into the solution. 
By coincidence, the value of this frequency was very close to that found 
experimentally by Sreenivasan (1985). The use of characteristic variables in the far- 
field boundary conditions eliminated this frequency from the solution. An 

t In fact, it can be easily shown that the model boundary conditions (4.17)-(4.19), with a = 
CT = 1,  /3 = y-  1, and E found from the solution to  (4.21)-(4.25), correspond to a primitive-variable 
boundary condition of the form ( P ) + ~  = (p),=] T,_,/T, + a(Armax)2+m where a = O( 1) and m 2 0. 
Thus, the analysis is performed on a boundary condition which, within the second-order accuracy 
of the finite-difference code, cannot be numerically distinguished from the one actually imposed, 
i.e. (4.26). 



Secondary frequencies i n  the wake of a circular cylinder 573 

explanation of this behaviour was provided for the numerical solutions of the 
compressible equations using an analysis based on a simplified model for the 
boundary conditions. 

These results illustrate the fact that great care must be taken in interpreting the 
results from numerical simulations, and that while the secondary frequencies are 
spurious in the infinite-domain case, the possibility exists that they may be found in 
a confined space such as a wind tunnel. In fact, K. R. Sreenivasan (private 
communication) found that the secondary frequency disappeared when the tests were 
performed in a wind tunnel where the distance from the cylinder to the upper and 
lower tunnel walls was 250 cylinder diameters. This distance is about seven times 
that used in the original tests. In the experiments by Van Atta & Gharib (1987), this 
distance was greater than a thousand diameters, i.e. 50 times greater than in 
Sreenivasan’s (1985) original experiments and four times greater than in his recent 
experiments. This may explain why they did not find spurious frequencies without 
vibrating the cylinder. Insight into the presence of the multiple frequencies in the 
original experimental results might be gained from three-dimensional computations 
which included the wind-tunnel walls. 
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